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Non-Gaussian fluctuations in electromagnetic radiation 
scattered by a random phase screen. I. Theory 

E Jakeman and P N Pusey 
Royal Radar Establishment, Malvern, Worcestershire WR14 3PS, U K  

Received 14 August 1974 

Abstract. The statistical, spatial and temporal coherence properties of electromagnetic 
radiation scattered into the far field by a deep random phase screen are investigated. It 
is shown that significant departures from Gaussian behaviour can occur even when the 
phase correlation length is much smaller than the dimensions of the scattering region-a 
situation in which the central limit theorem might be expected to apply. Formulae are 
derived relating these departures to elementary properties of the scattering structure, which 
may therefore be determined by measurement of the fluctuations in the scattered radiation. 
Application of the results to scattering from very rough surfaces is discussed. 

1. Introduction 

It is well known that an electromagnetic field which is composed of independent ran- 
domly phased contributions from a large number of scattering centres will be Gaussian- 
distributed by virtue of the central limit theorem (see for example Davenport and Root 
1958, chap 5).  The statistical properties of such a field contain no information other than 
that there are many scatterers. However, if the number N of scatterers is small, so that 
the central limit theorem cannot be applied, then the statistics will deviate from Gaussian 
by an amount depending on N and other parameters characterizing the scattering 
process. In previous publications (Jakeman and Pusey 1973a, b) we reported some pre- 
liminary theoretical and experimental results of an investigation of the statistical 
properties of light scattered by a random phase screen, ie a system which retards the 
phase of an incident electromagnetic field by a randomly varying, position-dependent 
amount. When the mean square phase deviation is equivalent to path differences of 
the order of a wavelength of the radiation or more (deep phase screen) each phase 
‘correlation area’ can be thought of as giving an independent randomly phased contri- 
bution to the far field. Our results were valid even when the scattering region extended 
over only a small number of correlation areas so that, as expected, they showed signi- 
ficant departures from Gaussian statistics depending on the phase correlation length <, 
mean square deviation and on WO, the size of the scattering region. In the light of 
earlier work (Deutsch and Keating 1969) the phase screen model was used to characterize 
dynamic scattering’ exhibited by a thin layer of nematic liquid crystal under the influence 
of an applied electric field (Heilmeier et al 1968). The spatial scale of refractive index 
fluctuations in this system was expected to be of the order of a few microns so that a 
laser beam could be focused down to illuminate an area sufficiently small for non- 
Gaussian effects to be important. Experimental observations (Jakeman and Pusey 
1973b) were in good agreement with the theoretical predictions based on a joint-Gaussian 
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model for the phase fluctuations and enabled the parameters t and of the model to be 
determined. 

Although this previous work was stimulated by an interest in the properties of light 
scattered by liquid crystals, the theoretical approach used applies equally well to the 
scattering of radiation of other wavelengths. Moreover, many naturally occurring 
phenomena other than dynamic scattering are the result of electromagnetic radiation 
passing through a random phase screen. Familiar examples are the twinkling of star- 
light, the fading of radio signals due to fluctuations in the ionosphere, and the randomly 
varying pattern which can be observed on the floor of a shallow pond or swimming pool 
when the water surface is disturbed. Perhaps more importantly, any rough surface 
behaves as a deep random phase screen when illuminated with sufficiently short-wave 
radiation. 

It seems likely, therefore, that a study of the statistics and coherence properties of 
electromagnetic radiation scattered by a deep random phase screen in the non-Gaussian 
regime (when the scattering region is comparable in size to the spatial correlation length 
of the phase fluctuations) might prove to have application in a number of fields. We 
have already mentioned N ,  the effective number of scattering centres, as a parameter 
governing the size of the non-Gaussian effects, but it is not clear what other parameters 
are important in this context nor whether the statistics of the scattered radiation can 
in general be usefully related to these parameters. It is appropriate at this point, therefore, 
to outline a simple intuitive picture of the origin of non-Gaussian fluctuations in radiation 
scattered by a deep random phase screen and to establish qualitatively the type of infor- 
mation which may be obtained by their measurement. 

Consider, then, the back-scattered radiation at an angle 8 (figure 1) from a perfectly 
reflecting very rough surface (path differences introduced of the order of a wavelength 

Figure 1. Simple back-scattering geometry 

or greater). The scattering region can be thought of as containing N independently 
oriented facets. For simplicity we shall assume that the surface is illuminated by a plane 
parallel beam of coherent radiation but that the detector area is larger than the coherence 
area defined in the far field by the scattering region (see for example Mandel and Wolf 
1965) so that intensities add. Neglecting diffraction effects, the intensity measured by a 
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square-law envelope detector will be proportional to the number of facets n(8) normal 
to the direction 8: 

C 
N 

I = -n(e) 
where C is independent of N .  Suppose, now, that the surface is translated through the 
beam; the intensity will fluctuate with mean and mean square values given by 

" 

and 

where the angular brackets denote ensemble or time averages. If the facet orientations 
are independent then it is reasonable to assume that the distribution of n(8) will be 
Poisson-like about the mean number normal to the direction 8. Thus we assume that 

Equation (3) then takes the form 

Now (n (8 ) )  is just the total number of facets N times the probability p(8)  of finding one 
normal to the direction 8 so that (2) and (4) may be written 

(0 = CP(@ ( 5 )  

The second term on the right-hand side of equation (6) is a 'non-Gaussian' effect due 
to the finite number of facets and vanishes as N -, 00. In this limit the intensity is cons- 
tant, ie ( I 2 )  = ( I ) ' ,  since in the simple case considered here incoherent detection has 
averaged out the Gaussian fluctuations. In general when N is finite, ( 5 )  and (6)  exhibit 
several interesting features. First it is evident that ( I )  is independent of the size of the 
scattering region whereas the second moment (6) depends on both the surface slope 
distribution (-de)) and the number of facets. Secondly, since the chance of finding a 
very large surface slope will usually be small, the non-Gaussian term in (6) may well be 
significant at large 8 even when N is large. This apparent contradiction of the central 
limit theorem is a consequence of the fact that although there may be many scattering 
centres in the target area, only a small fraction contribute to the intensity in the direction 
8 at any one time. This can be expressed in a different way by saying that convergence 
to Gaussian statistics as predicted by the central limit theorem is slow due to fluctuations 
in the cross section of each scattering centre. A further property of the second-order 
statistic (6) is that it is independent of the absolute magnitude of the intensity and its 
measurement could therefore provide an attractive way of determining N and p(8). 

The intuitive approach dtscribed above gives useful insight into the way in which 
non-Gaussian fluctuations arise and into what parameters govern their magnitude. 
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However, it only provides a qualitative picture of the origin of certain statistical proper- 
ties since we have made many simplifying assumptions and approximations. For example, 
we have neglected diffraction effects, variation in the size of facets and the consequential 
fluctuations in N .  In this paper, therefore, we carry out a more quantitative investigation 
of the statistical and coherence properties of electromagnetic radiation scattered by a 
deep random phase screen. The companion paper I1 reports experimental measurements 
made on the liquid crystal system, referred to earlier, and compares the results obtained 
with the formulae derived here. 

Two separate theoretical methods are described in $§2 and 3. The first is a direct 
analytical approach based on a joint-Gaussian model for the phase fluctuations and 
certain other well defined assumptions and approximations. The second is more closely 
related to the empirical method used above, being based on the division of the scattering 
region into a number of independent 'micro-areas'. Both techniques lead to similar 
expressions for the first- and second-order intensity moments provided that certain 
reasonable parameter identifications are made; preliminary results for these quantities 
have already been published (Jakeman and Pusey 1973a, b). The temporal and spatial 
intensity correlation functions can only be extracted with some difficulty in the analytical 
case, however, whilst the micro-area approach proves to be more tractable both for the 
evaluation of these and the higher-order statistical properties of the intensity. The two 
methods are outlined in Jakeman (1974) and repetition is avoided where possible 
although some details of the calculations are included in an appendix. The results 
obtained in & 2  and 3 are discussed and compared in the following section. In $ 5  
application of the formulae to scattering from rough surfaces is briefly discussed. 

2. Direct analytical approach 

We shall consider the experimental arrangement shown in figure 2 in which a collimated 
beam of electromagnetic radiation is incident on a phase screen of negligible thickness 
and the forward-scattered radiation is detected in the far field (Fraunhofer region) by 
a square-law envelope detector whose axis makes an angle 0 with the direction of 
incidence. The positive frequency part of the electric field at the detector point 
r 

(7) b + ( r ,  t )  = E ,  e-io' 

where k = w/c is the wavevector of the light, 4(r' ,  t )  is a randomly fluctuating phase 
variable introduced by the screen in the z = 0 plane and E,  is a constant. We have 

(R, 6, z) E (R,  z )  is given by (Jakeman 1974) 
+ m  

d2r' exp(ik1r' - V I )  exp(i&r', t ) )  exp( - rI2/ W i )  J- 00 

Incident radiation 

Figure 2. Experimental arrangement for detection of radiation scattered by a phase screen. 
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assumed that the incident beam has a Gaussian intensity profile of width WO mainly 
for mathematical convenience but this would be the normal situation in laser light 
scattering experiments for example (see paper 11). In the far field 

l r ‘ - r [  N r-R.r‘/r 

where r = ( R 2  +z2)1/2 and (7) becomes 

b + ( r ,  t )  = E ,  exp[i(kr-ut)] 1- + m  

d2r‘ exp( - ikR . r’/r exp(i+(r’, t ) )  exp( - f 2 / W : ) .  (8) 

2.1. Statistics 

Defining the intensity 

I ( r ,  t )  = b + ( r ,  t)&-(r, t )  (9) 

and assuming that 4 is Gaussian distributed so that 

<exp(-izj4(rjj t )> = exp[-+((zj+(rj, t)12>I (10) 

the mean and mean square intensities can, with a little manipulation, be expressed in 
the form (Jakeman 1974) 

( I @ ,  t ) )  = n2WiEi Iom r d r  J,(krsin O)exp[-P(l -p(r))-r2/2Wi] (1 1) 

+ m  

(12(r ,  t ) )  = n WiE: d2r‘ d2r” d2r“‘ exp[2ikr” sin e cos r]  - (r” + r‘” + r”’2)/Wg] J- m - 
x exp{ - +2  [2 - p(r” + r”’) - p(r” - r”’) - p(r’ + r ” )  - p(r‘ - r ” )  

+ p(r’ + r”’) + p(r’ - r”‘)]}  (12) 

where r]  is the polar integration angle corresponding to r“, J, is the zeroth-order Bessel 
function, is the mean square phase deviation and 

p(r)  = t)+(r, t)>/P (13) 

is the normalized phase correlation function which we shall take to be translationally 
invariant and independent of time, corresponding to statistically stationary phase 
fluctuations. The integrals in equations (1 1) and (12) can be evaluated using the approxi- 
mation 

- 
exp p p ( r )  1 + (eo2 - 1) exp( -TYr2/t2) (14) 

which is discussed in Jakeman (1974) and has been used independently by Berry (1973). 
It is valid if 

p>> 1 (15) 

and if the phase correlation function p(r)  can be expanded about the origin in terms of a 
‘correlation’ length ( as follows (Marathay et al 1970) 

p ( r ) =  1-r2 /p+ . . . .  (16) 
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(Note that the presence of a linear term in this expansion would imply discontinuities in 
+(r, t).) Substituting (14) into (11) leads, after integration, to 

W i  e-Geexp(-ik2Wi sinZ@ 

The terms in exp( - p) may be neglected for large p, as may the l/Wi factors, provided 
that WO 2 t. Thus (17) finally reduces to 

Evaluation of the second moment is not so straightforward. Substitution of the approxi- 
mation (14) into the last exponential factor in (12) leads to the sum of sixteen terms each 
of which is itself the ratio of two factors. Many of these terms give contributions of order 
exp(-@) however, and may be neglected. The significant terms are retained in the 
approximation 

exp( - ;j;r[2 - p(r” + r”‘) - p(r” - r fN)  - . . . I} 

(19) 
exp[ -?(lrtt + rff’I2 + Ir” - r”r12)//52] (2  + eZH exp[ -p(lrf +rfrlZ + lr’ -rnl ’11) 

[I +(e”- l)exp(-?lr’-r”’l2//52)][1 +(ep- 1)exp(-(621r’+r”f2/52)~ 
‘v 

These terms correspond to regions in the three-dimensional vector space (r’, r”, r‘”) in 
which the second factor in the exponent on the left-hand side is small. These are the 
only regions which contribute to the integral (12) when >> 1. Thus the first term on 
the right-hand side of (19) corresponds to the two regions r” - 0, r’ - 0 and r“ - 0, 
r”’ - 0 (written out separately in equation (A.1)) whilst the second term corresponds 
to the overlap region r” - r’ - r”’ - 0. The integrals are evaluated in the appendix 
and it is shown that after normalization with the mean intensity (18) the second moment 
may be written (for WO 2 5 )  

which reduces to the published result (Jakeman and Pusey 1973a, b) 

in the commonly occurring situation when t 2 / W i  is small. 

2.2. Spatial coherence 

From equation (8) the first-order spatial coherence function can be reduced to the form 
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where 

The integrals may be evaluated within the limits of the approximations (14) and (15) 
to give (WO 2 5 )  

the second-order spatial coherence function is given by the formula 
+ m  

<Z(r, M r ‘ ,  t ) )  = d2r, d’r, d2r3 exp[ik(r, . u - r 2 .  U)] 

x exp[- (r: + rz + ~;)/W;I exp[ - 3 7 2  - p(r2 + r 3 )  - p(r 2 - r 3 - *‘.)I (25) 

by analogy with (12). It is shown in the appendix that within the limits of the approxi- 
mations outlined in 0 2.1 the integral may be performed to obtain the result 

provided that t 2 / W i  is small. 

23 .  Temporal coherence 

Using the expression (8) for the field, the first-order temporal correlation function of 
electromagnetic radiation scattered by a random phase screen may be expressed in the 
form 

where 

In order to proceed further we shall assume that the spectrum of phase fluctuations is 
‘cross-spectrally pure’ : 

where p(r) is defined by (1 3) and 

If ~ ( z )  is close to unity then the main contribution to the integral in equation (27) comes 
from the region r’ - 0 and using the expansion (16) for p this may be evaluated to give, 
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This is finite even in the limit 4 7 )  + 0 (7 + CO) because of the second exponential factor. 
However, since (62>> 1 the first exponential factor decreases rapidly to zero as 4 7 )  
deviates from unity. This feature justifies the assumption a(t) - 1 made in order to 
obtain (31). It will often be a good approximation to write 

The temporal intensity correlation function is given by 

<I(r, t)l(r, t + 7)) 

+ m  

= T[ WiE: 1- d2r' d2r" d'r"' expE2ikr" sin 8 cos - (r" + r"' + r'"')/ W i ]  
cc 

x exp{ - p [ 2  - p(r" + r'") - p(r" - r'") 

- n(.t)(p(r' + r") + p(r' - r") - p(r' + r"') - p(r' - r"'))]} (33) 

where we have made use of the factorization property (29). At this point we shall assume 
that &(7) >> 1. Within the limits of the approximations discussed earlier the intensity 
correlation function turns out to be small outside this region. Thus we can use the 
approximation 

exp(Pp(r)a(s)) 2 1 + [exp(po(z))- 13 exp( -(620(7)r2/t2). (34) 
We need consider only terms analogous to the right-hand side of (19). The first of these 
gives the usual Gaussian contribution but the second is difficult to evaluate analytically. 
In the appendix it is shown that results may be obtained in two situations (when t 2 / W i  
is small) : 

( I ( r ,  W ( r ,  t + 7)) 

t ) Y  
I(b+(r, w - ( r ,  t+d>I2 

= ( 1 - $ )  ( I +  t D 2  

for a(7)F >> 1, 4 7 )  - 1 
k2520(7) sin% 
2pc 1 + o( 7)) 

(35) 

These results are somewhat less satisfactory than those obtained in the previous sub- 
sections because of the restricted range of times over which they are valid. Calculation 
of higher-order statistical properties of the field is also difficult using the approach 
described above, and it is appropriate at this point to consider an alternative method of 
solution. 
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3. Micro-area approach 

In this method we imagine the scattering region to be a uniformly illuminated disc, but 
neglect the associated ‘aperture’ diffraction effects. The emerging wavefront will be 
divided into a finite number N of micro-areas or facets over which the phase can be 
regarded as changing in a coherent fashion and it will be assumed that these regions give 
statistically independent contributions to the far field. This approach has been used with 
some success for Gaussian fields (ie N -, CO) in connection with light scattering from 
the sea (see for example Cox and Monk 1954) and diffuse surfaces generally (Enloe 1967, 
Estes et a1 1971) but here we shall consider the non-Gaussian situation when N is finite. 
Our starting point is the expansion 

N 
b+(r ,  t )  = e-’”‘ 1 aj(r, t) exp(ill/j) 

j =  1 
(37) 

for the electromagnetic field at the detector. The t+bj are independent random phases 
whilst the diffraction factor ai for the jth micro-area is given by 

a;(r, t )  = E: exp i(k1r’- r”( sin 6 cos q- + dj(r’ ,  t )  - 4j(r”,  t)) d’r‘ d’r“ (38) s, s, 
where q- is the angular variable corresponding to the polar vector r’ -r“ and W is a region 
of coherently changing phase or ‘facet’ on the wavefront emerging from the phase screen. 
In order to evaluate the moments of the aj we must still assume some form for the statis- 
tical properties of the 4j. We shall make the approximation that I#I varies linearly over 
the regions W which are of dimensions 5 : 

4 = r .m/5 (39) 
where the slope is (two-dimensionally) Gaussian distributed 

These assumptions are equivalent to the joint-Gaussian model adopted in 9 2 (Jakeman 
1974). In order to evaluate temporal correlation functions we shall make the related 
assumption 

It is not difficult to demonstrate that the joint-Gaussian model plus the factoriza- 
tion property (29) lead to the same result for the field correlation function 
(exp i Cj(+(r>, rj ) -+(r; ,  t j ) )  as (39) and (41) so that these assumptions are equivalent. 

3.1. Statistics 

Assuming that the ai are all described by the same probability distribution the mean and 
mean square intensities may be written from (37) in the form 

(I) = N(a’) (42) 
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Here we have taken advantage of the statistical independence of the phase factors in (37) 
and of the a j .  In order to estimate the size of the diffraction factors we shall confine the 
region of integration in (38) to a disc of radius t/ J2. This is consistent with the expansion 
(16) for the phase coherence function although it is not, of course, possible in practice to 
decompose the scattering region into a set of non-overlapping discs. Substitution from 
(39) into (38) leads after integration to 

In calculating the averages of powers of this quantity using the distribution (40) we use 
the approximation (Watson 1944, p 421) 

since the major contribution to the integrals comes from the region x - 0. This gives, 
for >> 1 and n 2 1 (Jakeman and Pusey 1973a, Jakeman 1974) 

so that (42) and (43) may be expressed in the form 

These results are identical with (18) and (21) of 5 2.1 when we set N = W $ / t z .  This is a 
reasonable identification since WO/ J2 is the width of the field amplitude profile of the 
phase screen and we have taken phase correlation regions of radius 5/,/2. 

3.2. Spatial coherence functions 

The first-order spatial coherence function can be evaluated as described in 5 2.2 and we 
consider here only the intensity correlation function. This may be written from (37) in 
the form 

(49) 

The last term may be evaluated with the help of (a), (44) and (45) to give 

( I ( r ,  t ) W ,  0 )  
( I ( r ,  0 )  ( W 3  0 )  

k Z g Z  
1 6 p  

x exp -(u2 + 2117, 
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where u and U were defined in $2.2. This formula differs slightly from that derived 
using the analytical approach (equation (26)). 

33. Temporal coherence functions 

The first-order temporal correlation function can again most easily be calculated by the 
analytical approach given in $ 2  and we shall evaluate only the intensity correlation 
function here. This takes the form 

(51) 

The last term may be evaluated from the definition (38) using (39), (41) and (45). The 
final result is 

( I ( r ,  t ) I (r ,  t + 7)) 
( 4 r ,  o>2 

l (8+(r , t )8-(r , t+T)) l2  
( I ( r ,  t D 2  

= (I-;)( 1+  

(52) 

When N is set equal to W ; / t 2  this formula reproduces the analytical results (35) and (36) 
in the appropriate limits (a - 1 and a << 1 respectively). Moreover, (52) behaves 
correctly in the limit T + CO (a + 0) when it reduces to unity. 

exp[k2t20(T) sin28/2P(1 + ~ T ) ) I  

NU - [Po(.r)/(2 +” 
+ 

3.4. Two-time, two-point correlation function 

It is not difficult using the micro-area approach to derive a formula which combines the 
statistical, spatial and temporal coherence properties contained in equations (48), (50) 
and (52). Thus the most general two-time, two-point correlation function of the intensity 
of radiation scattered by a Gaussian random phase screen may, according to this method, 
be expressed in the form 

( I @ ,  OW, t + 4) 
( I @ ,  0 )  (W,  0 )  

k2t2a(r) sin2B 

I ( d + (r, t)d - (r’, t + T ) )  I 

exp( - k2t2u2/16) exp[k2t2(u2 + 2v 

N {  1 - [Pa(7)/(2 +P)I2) 2 m  1 + 47)) 
+ 

where the normalized first-order correlation function is given by 
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the mean intensity by 

Nt4 ( k * < ~ ~ z n z ( i )  
(Z(r, t ) )  cc -i exp - - 

4 
(55) 

and U and U by equation (23). 

3.5. Higher-order statistics 

It is possible, using the micro-area approach to calculate higher-order statistical proper- 
ties of the field. This problem is discussed in previous publications (Jakeman and Pusey 
1973a, Jakeman 1974) and we include here a brief summary of the method of solution 
for completeness but without further comment. The method is based on the observation 
that (37) is a two-dimensional random walk of variable step length. The distribution of 
the resultant of such a walk has been investigated by several authors (see for example 
Rayleigh 1919 and references therein) and the subject has recently received renewed 
interest in connection with the scattering of light from finite numbers of particles 
(Pusey et al 1974, Schaefer 1974). The formula relevant to the present work is quoted 
by Watson (1944, p 420) 

N 
P(Z) = 4 /omuJo(uJI) n Jo(aiu) du. 

i =  1 

The generating function corresponding to this distribution is a confluent hypergeometric 
function of N variables (see, for example, Erdelyi 1954, p 385) 

(exp(-sl)) = 1)~(1; 1,1,. . . 1 ; -a is ,  -a i s , .  . . - a i s )  (57) 

from which the moments may be derived without difficulty. After averaging over the 
step lengths (diffraction factors) we obtain (Jakeman 1974) 

which may be evaluated explicitly using (46). Results for up to the fifth intensity moment, 
and comparison with experiment are presented in Jakeman and Pusey (1973a) and Jake- 
man (1974). 

4. Discussion and comparison of theoretical results 

Before embarking on a detailed analysis of the results derived above, it is useful to 
express the assumptions and approximations made in $ 2  in terms of more familiar 
physical concepts so as to highlight the similarities between the two methods of approach 
to the problem which we have described. 

We have already pointed out the equivalence between the assumption of joint- 
Gaussian phase statistics together with the expansion (16) for pfr)  made in the analytical 
approach of 5 2 and the linearly-faceted model with Gaussian slope distribution adopted 
in $3 .  The choice of joint-Gaussian statistics for the phase is a somewhat arbitrary one, 
though it is commonly made in the literature both for scattering from rough surfaces 
(Beckmann and Spizzichino 1963) and for propagation through phase screens (Mercier 
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1962) either for mathematical convenience or for want of a better model. It is well known, 
however, that other distributions lead to radically different angular distributions of 
scattered intensity (Kivelson and Moszkowski 1965, Beckmann 1973). 

>> 1 has several implications. It means that different parts of 
the wavefront are out of phase by randomly large amounts equivalent to path differences 
of the order of a wavelength or more. Thus the approximations (14) and (19) and the 
discarding of terms like exp( --p) in the analytical approach are equivalent to the 
assumption of independently contributing micro-areas made in Q 3. Since (k5) -  ' may 
be regarded as the angular spread of the diffraction lobe from a single facet, whilst Jp/k< 
corresponds to the width of the overall angular distribution of scattered intensity (equa- 
tion (18)) a second implication of large is that the facet slope distribution rather than 
the facet size will govern the scattered intensity distribution. Furthermore (kW,)- ' 
represents the width of the far-field diffraction pattern of the entire scattering region 
so that ( v W i / ( 2 ) ' ' 2  is the ratio of the width of the scattered intensity distribution to the 
'speckle' size, and will be large provided that WO is not much smaller than 5. Neglecting 
terms containing higher inverse powers of this quantity in the analytical method is 
thus seen to be entirely consistent with the neglect of 'aperture' diffraction effects in the 
micro-area approach. 

With the exception of equation (20), we have presented for simplicity in Q 2 results 
valid only in the limit <'/Wi << 1 (but finite). In fact it is clear from the formulae (20), 
(21) and (48) for the second intensity moment that the micro-area and analytical methods 
give identical results only in this limit. This is because we have assumed a Gaussian 
intensity profile for the incident beam of radiation in the analytical method but a uni- 
formly illuminated scattering region in the micro-area approach. The effect of using a 
Gaussian intensity profile in this latter picture would be two-fold. Firstly, it would 
increase the effective number of scatterers. Secondly, it would introduce another statistical 
fluctuation in the scattering cross section of each facet due to the range of its possible 
positions relative to the centre of the beam. These fluctuations would tend to be averaged 
somewhat by the finite size of the facets. The result of the interplay of these effects is 
difficult to predict, but according to equation (20), a decrease in the non-Gaussian term 
and an increase in the Gaussian contribution to the second intensity moment is produced 
when they are taken into account. However, it is quite possible that both the Gaussian 
and non-Gaussian contributions to the higher-order moments might be increased by 
using a Gaussian beam profile rather than a uniformly illuminated disc. 

A further factor complicating a comparison of the two theoretical approaches is the 
assumption of constant 5 and N in 0 3. This does not lead to differences with the analytical 
approach however, for the following reason. Examination of the integrands in the ex- 
pressions which must be evaluated to obtain the formulae of $2,  for example (A.9), 
indicates that they are generally characterized birelatively sharp cut-off regions which 
contribute only negligible fractions (of order 1/$*) of the whole integrals. These cut-off 
regions correspond, in the micro-area picture, to the spread of facet sizes : so the neglect 
of such a spread and the consequent variations in N is consistent with the analytical 
treatment. The width of the cut-off regions is in fact closely related to the spatial decay 
of the electric field correlation function at the phase screen, whilst their shape will be 
sensitive to the approximation (16) for the phase coherence function. It is difficult to 
estimate the effect of this approximation but it is probably not a significant factor as far 
as the second moment is concerned. However, it seems likely that the distribution of 
facet size and number should be properly taken into account in the micro-area approach 
when calculating either the higher-order statistical properties of the intensity (which are 

The assumption 
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dominated by fluctuations in a j ,  defined by equation (38)) or the spatial coherence pro- 
perties (which are determined in part by characteristics of the individual micro-areas- 
see (b) below). 

From the preceding discussion it appears that the two theoretical treatments des- 
cribed in Q 2 and 3 are almost entirely equivalent, at least in the limit t 2 / W g  << 1, and 
it is not surprising that similar results are obtained. The micro-area approach may be 
thought of as a kind of ‘diagram’ technique (see for example Zipfel and De Santo 1972) 
for summing the important contributions to the integrals which must be evaluated in 
the analytical treatment of 8 2. Thus the two important regions of integration referred 
to in 0 2.1 correspond to the beating of intensities from different facets (r” - 0; r‘ - 0 or 
r”’ - 0) and to the beating of intensities from the same facet (r” - r’ - r”‘ - 0) and give 
rise to the Gaussian (first) and non-Gaussian (second) terms in the second-order stat- 
istic (21). 

We shall now revert to the pattern adopted in the last two sections and discuss 
separately the statistics, spatial and temporal coherence properties predicted for radia- 
tion scattered by a deep random phase screen. 

4.1. Statistics 

The mean intensity (17), (18) or (47) exhibits the broad angular spread and almost total 
absence of direct beam typical of radiation scattered by a deep random phase screen 
or very rough surface (see Q 5). The main feature of the distribution is that the characteris- 
tics of the scatterer enter into the formula only as the ratio t/d@, ie the inverse RMS 
slope of the wavefront. Thus measurements of (I) cannot be used to determine < or 
separately. This may be contrasted with the second-order statistic (20), (21) or (48) 
which depends on the model parameters in a more complicated way. The self-evident 
departure from the Gaussian value of two diminishes as t2/WG --* 0, but even for small 
values of this ratio when (21) and (48) are valid this deviation may be considerable owing 
to the large @ factor multiplying the second term. As we shall see in the next section 
this is intimately related to the normalization of the slope distribution p(m). In many 
situations (21) and (48) will be adequate so that by measuring the angular dependence 
of the second moment and intercept at 8 = 0 both the RMS slope, </Jp, and the product 
( d p  can be determined. This technique has in fact already been used to determine 
the parameters characterizing the dynamic scattering mode exhibited by thin layers 
of nematic liquid crystal (Jakeman and Pusey 1973b) and is discussed further in 11. 
The non-Gaussian effect is enhanced at large angles by the exponential factor corres- 
ponding to the low probability of finding facets of the wavefront tilted at large angles. 
The dependence of the second moment on angle is just the inverse of that shown by 
the mean intensity (18) or (47). This is consistent with the predictions of the simple 
model given in the introduction. 

4.2. Spatial coherence 

The dependence of the first-order spatial coherence function (24) on the detector 
separation through the quantity U is that expected from an incoherent source of Gaussian 
intensity profile situated in the plane of the phase screen, and corresponds to a far-field 
speckle size or coherence length of angular width (kWo)-*. The usual spatial caherence 
factor, depending on the source size or illuminated area also appears in the Gaussian 
(first) term of the second-order coherence function (26). The non-Gaussian term is 
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characterized by the decay length expected from a source of radius 5, however, and will 
fall off more slowly if WO > 5. Thus our model predicts two coherence lengths: one 
related to the diffraction pattern of the scattering region and one to the correlation length 
of the phase fluctuations. The corresponding non-Gaussian (second) term of the result 
(50) obtained by the micro-area approach displays a slightly different dependence on 
U unless i k u 5  << 1. The particular behaviour obtained by the micro-area approach is 
in fact a direct consequence of the approximation (45) which is itself equivalent to assum- 
ing a smooth convergence factor 4 exp[ - 4(r” + r”2)/52]  in the integrals (38) rather than 
a sharp cut-off at r’ = 5 and r” = 5. The Bessel function behaviour is thus to be expected 
from a model in which the regions of coherent phase are rather well defined. As mentioned 
earlier, inspection of the integrals in the appendix arising from the approximation (19) of 
the analytic treatment indicates that it does indeed correspond to such a model. 

One important conclusion which must be drawn from the above discussion is that 
whereas the non-Gaussian contributions to the statistics (and, as we shall see, the spec- 
trum) are relatively insensitive to the detailed nature of the facets and are therefore 
almost model-independent, the non-Gaussian contribution to the spatial coherence 
function is closely connected with the diffraction pattern of a single facet and is therefore 
more intimately related to the detailed structure of the scattering fluctuations. Although 
the main properties predicted for this function in $0 2 and 3 are therefore likely to be 
correct, its detailed behaviour may well not be right for every scattering system. 

4 3 .  Temporal coherence 

We have already seen that the results of the micro-area approach reduce to the asymp- 
totic formulae obtained by the analytical method in the appropriate limits. The first-order 
temporal coherence function (31) or (32) decreases rapidly as the delay time z increases 
from zero and is therefore only sensitive to the behaviour of o(z) for small values of z. 
In this region o(z) may be expanded as a Taylor series about z = 0. Thus, for example, 
a Gaussian phase correlation function o(z) of characteristic decay time z, gives rise to a 
Gaussian field correlation function of coherence time z,/,/4’. This is consistent with 
the introduction of Doppler shifts into the incident radiation corresponding to path 
changes of order ,,/p/k in the time z, of the phase fluctuations. The Gaussian contri- 
bution to the second-order correlation function will show a similar time dependence 
according to (35), (36) and (52) by virtue of the Siegert-type factorization (Siegert 1943) 
in terms of the field correlation function. The non-Gaussian term in (52) exhibits a 
more complex behaviour, however. Since@ >> 1 the prefactor { 1 - [Po(z)/(2 +?)I2} - 
decreases rapidly from p i 4  at z = 0 to 1/( 1 - o(~)) at small nonzero values of 5. Indeed 
an expansion of this quantity about z = 0 shows that it has a Lorentzian shape (negative 
exponential spectrum) of width z,/,,/4’ when O ( T )  is Gaussian. After the rapid fall of 
this factor to a value near unity, however, the time dependence of the non-Gaussian 
term is controlled by the angle-dependent exponential factor. When the exponent is 
small, ie for sufficiently large 7, only the first terms of an expansion in powers of the argu- 
ment need be retained and (52) reduces to 

Thus the long tail of the correlation function is a direct measure of the phase fluctuations. 
In terms of the simple facet model described in the introduction, the origin of the two 
time scales may be understood as follows. The short correlation time is the duration 
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of the sweep of diffraction lobes of angular width (k<) - '  from individual facets on the 
emerging wavefront across the (point) detector. The overall angular sweep (ie the angular 
spread of the scattered intensity) is of the order of Jp/k( which takes ptace in a time T,  . 
Thus each facet illuminates the detector on average for a characteristic time 

7,(kt)- 'W JP = T J ~ V .  
The long decay time, on the other hand, is related to the likelihood of a facet returning 
to its previous orientation, ie to the joint probability of finding a particular slope at 
time t and time t+ T. It is therefore not surprising that it is of the same order of magnitude 
as the phase correlation time T~ itself, as indicated by (59) above. 

5. Application to rough surfaces 

In this section we shall consider the transformations necessary for our results to be 
applicable to the scattering of electromagnetic radiation from rough surfaces. A good 
deal of literature exists on this subject but as far as we are aware previous work has 
concentrated exclusively on the Gaussian regime when the spatial scale of the surface 
structure is small compared to the total scattering area. A full discussion of the compli- 
cations of finite surface reflectance and depolarization effects may be found in the book 
by Beckmann and Spizzichino (1963) and we shall confine ourselves here to the simple 
case of a perfectly conducting surface. 

We have remarked on several occasions that a rough surface behaves as a phase 
screen. The details of the equivalence may be deduced with the help of figure 3 which 

Figure 3. General geometry for scattering from a rough surface. 

shows the geometry of a general surface scattering configuration. For a perfectly con- 
ducting surface equation (8) for the field in the Fraunhofer region is replaced by (Beckmann 
and Spizzichino 1963, chap 2) 

&' ( r ,  t )  = F, exp[i(kr - ut)] d2r' exp[i(k, -k2) , (r'+zi)]A(r')  (60) 

where 

1 +COS 8, COS 8, -sin 8, sin 8, cos O3 
cos e, +COS e, Fo Jc 

and A(r') defines the variation of intensity within the illuminated region. k, and k, are 
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the incident and scattered wavevectors of the radiation, r' is a polar vector measured in 
the plane of the surface and z the local surface height measured from this median plane. 
Since 

(62) k ,  - k ,  = k[(sin 8,  -sin 8, cos 8,)P-sin 8, sin 0,Q-(cos 8,  +cos e,);] 
the usual scattering vector term appearing in equation (8) of 9 2 which may be written 
exp ik . r' sin 8 is replaced by 

exp{ik . r'[(sin e, -sin e, cos e,), +sin28, ~ i n ~ 8 , ] ' / ~ ) .  

( k ,  -A,). iz =  COS e, +COS e,) 

(63) 

(64) 

depends on the surface profile and replaces the exp(i&(r', t ) )  factor in equation (8). Thus 
in order to derive formulae applicable to the scattering of electromagnetic radiation 
from rough surfaces from our earlier results the following transformations are necessary : 

The second contribution to the phase shift in (60), ie 

sin e + [(sin e, -sin e, cos e,), + sin28, ~ i n ~ e , ] ' / ~  (65) 

Eo --* Fcl (67) 
where 2 is the mean square height deviation of the surface. The deep hase screen 
limit >> 1 is thus seen to be equivalent to the very rough surface condition $'I2 >> 42n.  
A particularly simple result for the statistics is obtained at normal incidence when 
8 ,  = 8, = 0 and when A(r') is Gaussian as in equation (8): 

( I )  a sec48/2 exp 

k2t2? cos49/2 t2 tan28/2 
exp( 4 2  1 

The first result is already to be found in the literature (see for example Beckmann and 
Spizzichino 1963, chap 5 )  but the deviation from Gaussian statistics implicit in equation 
(69) has not been studied previously as far as we are aware. For a given surface roughness 
this deviation increases as the wavevector of the incident radiation increases so that 
non-Gaussian fluctuations can be obtained by scattering sufficiently short wave radiation 
from any moving surface even when very many facets are illuminated. Moreover, as we 
have seen, these fluctuations are entirely an intensity effect so that broadband radiation 
satisfying minimal conditions of coherence could in principle be used to obtain the 
distribution of surface slopes and correlation length < from measurements of the second- 
order statistic (69). 

Although relations (68) and (69) are only valid for a surface whose height is Gaussian 
distributed with respect to a median reference plane, the simple geometrical optics 
approach described in the introduction strongly suggests that it might be possible to 
derive more generally applicable formulae. Indeed Kivelson and Moszkowski (1965) 
have shown rigorously (within the limits of diffraction theory) that the back-scattering 
cross section of a very rough, perfectly conducting surface is a function only of the 
(arbitrary) surface slope distribution-a result which is implicit in equation (5).  Extension 
of the method used by these authors to the calculation of second-order statistical proper- 
ties of the intensity of radiation scattered by a surface of arbitrary slope distribution 
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would appear to be a formidable task. However, a generalization of the micro-area 
approach of $ 3  seems more feasible and may well provide an adequate basis for the 
development of a new technique for the measurement of surface roughness. (Current 
methods of characterization and measurement of micron-scale surface roughness are 
reviewed by Spragg and Whitehouse (1971) and Sprague (1972)) 

The transformations (65H67) can also be appIied to the spectral properties (32) and 
(52) and the resulting formulae might find application in studies of intrinsically fluctuat- 
ing surfaces such as the sea. It is interesting in this context, that over twenty years ago 
Goldstein (1953) suggested that the effective number of scatterers might be determined 
by studying deviation from Gaussian statistics. The ‘cross-spectral purity’ condition (29) 
does not hold in general, however, for rigid surfaces undergoing simple translational 
motions such as moving ground glass, and the temporal correlation properties of this 
type of system have yet to be investigated in the non-Gaussian regime. 

Transformation of the spatial coherence properties (24) and (26) is more difficult 
unless the two detectors are sufficiently close for the RMS phase shift introduced by the 
surface to be the same in both directions 8 and 8’. O2 may then be taken as the mean of 
these angles in (66) whilst the transformation (65) may be applied without difficulty to 
U’ and U’ when these are expressed in the form 

sin28+sin28’$2sinesin8‘cosIC/ 

where IC/ is the angle between R and R ’ .  

6. Conclusions 

We have shown that when electromagnetic radiation is scattered by a deep random 
phase screen then fluctuations in the scattered radiation, which arise when the scattering 
region is small, may be related in a quantitative way to elementary properties of the 
scatterer. In particular the mean square intensity and the temporal and spatial coherence 
functions of the scattered radiation may be expressed in a form in which departures 
from Gaussian statistics are explicit functions of these properties. Gaussian (field) 
statistics are to be expected, by virtue of the central limit theorem, when many scatterers 
contribute to the far-field intensity. However our results indicate that non-Gaussian 
effects may be important even when the effective number of scattering centres is large. 
The central limit theorem must therefore be used with some care when predicting statis- 
tical properties of scattered radiation. 

We have demonstrated the mathematical equivalence of a Gaussian random phase 
screen model and an approach in which the wavefront of the scattered radiation is 
assumed to be a linearly faceted structure with a Gaussian slope distribution. 

Finally, we have indicated how our formulae may be modified in order that they may 
be applied to scattering from very rough surfaces and indicated that certain of the results 
might find application in the measurement of surface roughness. Much remains to be 
done in this field however and we have not attempted a detailed investigation of the 
technique here. This will form the subject of a future publication. 
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A.1. Moments 

We shall first calculate the mean square intensity (20) using the approximation (19). 
Two integrals must be evaluated: 

I , = 71 WiE: s_’ d2r‘ d2r“ d2r“‘ exp[2ikr” sin 8 cos q - (r” + r“’ + r””)/Wi] 
m 

exp[-p(lrft+r’t’12+ 1r”-r”’l~)/~21+exp[ -p(lr”+r‘12+ lr”-r’l2)/<2] 

+ (ep -  1) exp ( -~~r~- r” ’~2 / t2 )1  [I  + ( e J -  l)exp(-plr’+r”’12/52)1 
X 

(‘4.1) 
and 

I ,  = n WiE: e’” 
i m  

d2r’ d2r“ d2r“‘ exp[2ikr” sin 8 cos q - (r” + rn2 + r“‘2)/ Wi] 

exp[-~(lr”+r”’12 +~r”-r“’~2+~r’+r”l2+lr’-r’’l2)/521 

[I  +(e@’ - 1) exp( - F l r r  - rrnl 2/52)1 [I +(e@’ - 1) exp( -plrJ + r“’l2/52)] ‘ 

1- cc 
- X - 

(‘4.2) 
The r” integration can be carried out exactly in both cases leading to 

n2 W;t2E: e2p k2t2sin28 + m  

1, = 447. - exP ( - 4-p ) [-m d2r’d2r”’ 

The kernel of the first integral is symmetric in r’ and r“’ and is dominated by the conver- 
gence factors exp( - 2$%”’2/52) and exp( - 2Pr t2 / t2 ) .  The significant contributions to 
I ,  are retained by using an approximation of the type: 

for both the r”’ and r’ terms. This leads to 

n4w2 k 2 t 2  sin28 
Ot E’e~p(  - - ) A  

2 p  w2 I ,  = 

where 
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A transformation to sum and difference coordinates in I ,  gives, after performing the 
angular integrations : 

where 

A and B may be evaluated by dividing the region of integration into two regions in which 
the denominators may be expanded : 

- 
where (e$’- 1) exp( -&/t2) = 1 ,  ie q = c2 if $2 >> 1. After integration the sums may 
be expanded in powers of 1 2 / p W z  which is small if >> 1 and W; 2 5’. This leads to 

(A.lO) A ‘v Wi[exp( - t2/ w:)+ o(g2/vwi)]  
so that 

or, after normalization using equation ( 1  8), 

and after normalization using (18) we obtain 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A. 15) 

The second moment, equation (20), is just the sum of the two results (A.12) and (A.15). 

A.2. Spatial coherence functions 

When detection is carried out at two points, the term exp(2ikr” sin I3 cos q )  appearing on 
the right-hand sides of (A. l )  and (A.2) is replaced by exp ik(r“’ . U--” . U) where U and U 
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are defined by (23). The r" integral can be performed exactly as before and the prefactors 
on the right-hand side of (A.3) and (A.4) are the same except that sin20 becomes u2/4. 
The factor exp(ikr"'. U) which appears inside the integrals does not affect the term in 
exp( -2$%Jrt2/t2) in (A.3) in the approximation (AS) so that I ,  may be written 

k 2 t 2 u 2  2 4  4 

I ,  = x4wd 4 4 2 2  Eoexp( - T ) ( A + ~ )  

where A is defined by equation (A.7) and 

(A.16) 

(A. 17) 

In the limit t2 << W i  the denominator is unity over virtually the whole range of integra- 
tion so that 

(A.18) 

However, in general a correction factor will arise, by analogy with (A.lO) of the form 
exp(-t2/W;) N I - ~ ~ I W ~ .  

C = W i  exp( - k2v2 Wi/4). 

The 'non-Gaussian' term I ,  takes the form 

I ,  = 

where 

(A. 19) 

(A.20) 

which reduces to (A.9) when U = 0. (A.20) can be evaluated if we neglect the 1/2Wi in 
the exponent (ie in the limit t2 << W;). Integration by parts and a change of origin then 
lead to 

(x +t2)"'J1(4kv(x+ t2)'l2) sech' 
W 

- 
D=- 42 e-F 

k v t 2  

The main contribution to the integral comes from the region 1x1 < t2/P < t2 so t k t  
the lower limit may be extended to - CO (the errors thus incurred being of order e-@). 
An expansion of the type (Watson 1944, p 140) 

(A.22) 

may then be used to obtain D in the form of a series of Bessel functions 

where [(2m) is the Riemann zeta function. The series converges very rapidly in typical 
situations for which ( k u t / 4 p )  < 1, and only the first term on the right-hand side of 
(A.23) has been retained in the text. This could have been obtained immediately from 
(A.20) by observing that the integrand cuts off sharply at x - t2, so that D could be 
written approximately 

(A.24) 
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A.3. Temporal coherence functions 

When a(@ >> 1 the approximation (19) leads to integrals analogous to (A.l) and (A.2). 
In the second term of the numerator, and in the denominator of the integrand on the 
right-hand side of I , ,  p i s  replaced by a(*)@ and this integral can be evaluated using the 
approach given in 0 A.l above. I ,  takes the form 

I ,  = IC WiE: exp(2Pa(z)) d’r‘ d’r” d2r“‘ exp[2ikr“ sin 8 cos q - (r” + r”’ + r“’2)/ W;] /-+*= 
exp[ - 42(lr” +,“’I2 + lr” - r”’12 + a(t)lr’ +,”I2 + o(t)jr’ - r”I2)/t2] 

X 
+(eg(T)p-- 1) exp[ -o( t )p l r ’  -r“‘l2/t21} { I  +(ea(r)p- 1) exp[ - a ( t )F / r t+  r”’/,/t,,}‘ 

(A.25) 
After integration over r“ this reduces to 

IC, W;<,E: exp(2Pa(t)) 
2qb2(1 + 4 7 ) )  

I ,  = - eXP( - 

exp[ -(r’, + r”’2)/Wi] 
J-, i .  . .] i. . .} (A.26) 

Two limiting cases may now be distinguished : 
(i) a(t) - 1. The integrand is the same as that appearing in (A.4) except that the 

denominator contains the product o (z)p  rather than simply p. The treatment 
given in 0 A.l can be followed and leads, for t2 << Wi, to 

(A.27) 

(ii) a(t) << 1 (but a(t@ >> 1). In this case the main contribution to the integral 
comes from the region r”‘ - 0 and we can use the approximation (AS) : 

(A.28) 

If we neglect the l /Wi  in the exponent on the right-hand side, the integral may be 
evaluated to give (t2 << W;) 

n4 Wit6E: 
4 p 2 (  1 + a(t)) 

I ,  = 

which is seen to be at least a factor 4 j p  smaller than (A.27) since 4 7 )  << 1. 

(A.29) 

Note added in proof. We are grateful to Professor M Bertolotti and Drs B Crosignani 
and P di Porto for pointing out to us that, strictly speaking, the quantity E ,  appearing 
in equation (7) should be angle-dependent. There is considerable debate in the Iiterature 
as to the nature of such a variation which depends critically on the boundary conditions 
used to reduce the Helmholtz formula to relation (7). If the gradient of the phase 
variable with respect to the z direction (figure 2) is assumed to vanish at the emergent 
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z = 0 plane then E,  a 1 +cos 6 and at large angles the scattered intensity will fall off 
faster than predicted by (18). However, since E ,  cancels from the formulae for the 
normalized statistical and correlation properties of the radiation, these will be unaffected. 
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